Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
J Agric Food Chem ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623691

RESUMEN

The plasma membrane (PM) H+-ATPase is crucial for a plant defense system. However, there is currently no consensus on whether the PM H+-ATPase plays a role in alleviating the toxic effects of herbicides on nontarget plants. We found that under the herbicide imazethapyr (IM) exposure, PM H+-ATPase activity in wheat roots increased by approximately 69.53%, leading to rhizosphere acidification. When PM H+-ATPase activity is inhibited, the toxicity of IM significantly increases: When exposed to IM alone, the total Fe content of wheat roots decreased by 29.07%, the relative Fe2+ content increased by 27.75%, and the ROS content increased by 27.74%. When the PM H+-ATPase activity was inhibited, the corresponding data under IM exposure were 37.36%, 215%, and 57.68%, respectively. This work delves into the role of PM H+-ATPase in mediating the detoxification mechanism in plants exposed to herbicides, offering new insights into enhancing crop resistance against herbicides.

2.
Sci Total Environ ; 926: 172114, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38561127

RESUMEN

The microbial hosts of antibiotic resistance genes (ARGs) found epiphytically on plant materials could grow and flourish during silage fermentation. This study employed metagenomic analysis and elucidated the occurrence and transmission mechanisms of ARGs and their microbial hosts in whole-crop corn silage inoculated with homofermentative strain Lactiplantibacillus plantarum or heterofermentative strain Lentilactobacillus buchneri ensiled under different temperature (20 and 30 °C). The results revealed that the corn silage was dominated by Lactobacillus, Leuconostoc, Lentilactobacillus, and Latilactobacillus. Both the ensiling temperature and inoculation had greatly modified the silage microbiota. However, regardless of the ensiling temperature, L. buchneri had significantly higher ARGs, while it only exhibited significantly higher mobile genetic elements (MGEs) in low temperature treatments. The microbial community of the corn silage hosted highly diverse form of ARGs, which were primarily MacB, RanA, bcrA, msbA, TetA (58), and TetT and mainly corresponded to macrolides and tetracyclines drug classes. Plasmids were identified as the most abundant MGEs with significant correlation with some high-risk ARGs (tetM, TolC, mdtH, and NorA), and their abundances have been reduced by ensiling process. Furthermore, higher temperature and L. buchneri reduced abundances of high-risk ARGs by modifying their hosts and reduced their transmission in the silage. Therefore, ensiling, L. buchneri inoculation and higher storage temperature could improve the biosafety of corn silage.


Asunto(s)
Lactobacillales , Ensilaje , Ensilaje/análisis , Ensilaje/microbiología , Zea mays/microbiología , Lactobacillales/genética , Antibacterianos , Temperatura , Fermentación
3.
Artículo en Inglés | MEDLINE | ID: mdl-38519614

RESUMEN

Cruciferae brassica oilseed rape is the third largest oilseed crop in the world and the first in China, as well as a fertilizer-dependent crop. With the increased application of organic fertilizers from livestock manure in agricultural production in recent years, the resulting antibiotic pollution and its ecological health effects have attracted widespread attention. In this study, typical tetracycline and sulfonamide antibiotics tetracycline (TC) and sulfamethoxazole (SMZ) were used to investigate the effects of antibiotics on rapeseed quality and oxidative stress at the level of secondary metabolism on the basis of examining the effects of the two drugs on the growth of soil-cultivated rapeseed seedlings. The results showed that both plant height and biomass of rapeseed seedlings were significantly suppressed and ROS were significantly induced in rapeseed by exposure to high concentrations (2.5 mg/kg) of TC and SMZ. Carotenoids, tocopherols, and SOD enzymes were involved in the oxidative stress response to scavenge free radicals in rapeseed, but phenolic acids and flavonoids contents were decreased, which reduced the quality of the seeds to some extent.

4.
Diabetes Metab Res Rev ; 40(4): e3799, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38546139

RESUMEN

AIMS: Previous studies have found that a single liver enzyme may predict gestational diabetes mellitus (GDM), but the results have been inconsistent. This study aimed to explore the associations of liver enzymes in early pregnancy with risk of GDM, as well as to independently rank risk factors. METHODS: This prospective cohort study included 1295 women who underwent liver enzyme measurements during early pregnancy and completed GDM assessment in mid-pregnancy. Logistic regression and restricted cubic spline analyses were conducted to assess the relationship between liver enzymes and risk of GDM. Back-propagation artificial neural network was performed to rank independently risk factors of GDM. RESULTS: Women diagnosed with GDM exhibited significantly higher levels of liver enzymes than those without GDM (all p < 0.05). The highest quartile of liver enzymes was associated with higher risk of GDM compared with the lowest quartile, with adjusted odds ratio (ORs) ranging from 2.76 to 8.11 (all p < 0.05). Moreover, the ORs of GDM increased linearly with liver enzymes level (all P for overall association <0.001). Furthermore, Back-propagation artificial neural network identified γ-gamma-glutamyl transferase (GGT) as accounting for the highest proportion in the ranking of GDM risk prediction weights (up to 20.8%). CONCLUSIONS: Single or total elevations of liver enzymes in early pregnancy could predict the GDM occurrence, in which GGT, alkaline Phosphatase, and aspartate aminotransferase were the three most important independent risk factors.


Asunto(s)
Diabetes Gestacional , Embarazo , Femenino , Humanos , Diabetes Gestacional/epidemiología , Primer Trimestre del Embarazo , Estudios Prospectivos , Factores de Riesgo , Hígado
5.
Appl Microbiol Biotechnol ; 108(1): 257, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456919

RESUMEN

Sorghum forage was ensiled for 90 days at two dry matter (DM) contents (27 vs. 39%) without or with Lactiplantibacillus plantarum inoculation. On day 90 of fermentation, silages were sampled to assess the microbial community dynamics and metabolome profile. L. plantarum inoculation improved silage quality, as shown by a lower pH and greater acetic acid concentration. Loss of DM remained unaffected by L. plantarum inoculation but was greater in low- vs. high-DM sorghum silages (14.4 vs. 6.62%). The microbiome analysis revealed that Pseudomonas congelans represented the dominant species of the epiphytic microbiota in both low- and high-DM sorghum forage before ensiling. However, L. buchneri represented the dominant species at the end of ensiling. Ensiling fermentation resulted in distinct metabolic changes in silages with varying DM content. In low-DM silages, ensiling fermentation led to the accumulation of 24 metabolites and a reduction in the relative concentration of 13 metabolites. In high-DM silages, ensiling fermentation resulted in an increase in the relative concentration of 26 metabolites but a decrease in the concentration of 8 metabolites. Compared to non-inoculated silages, L. plantarum inoculation resulted in an increased concentration of 3 metabolites and a reduced concentration of 5 metabolites in low-DM silages. Similarly, in high-DM silages, there was an elevation in the relative concentration of 3 metabolites, while a decrease in 7 other metabolites. Ten metabolites with bio-functional activity were identified, including chrysoeriol, isorhamnetin, petunidin 3-glucoside, apigenin, caffeic acid, gallic acid, p-coumaric acid, trans-cinnamic acid, herniarin, and 3,4-dihydroxy-trans-cinnamate. This study presents a comprehensive analysis of microbiome and metabolome profiling of sorghum forage during ensiling as a function of DM content and L. plantarum inoculation, with a particular emphasis on identifying metabolites that may possess bio-functional properties. KEY POINTS: • DM loss was not different by L. plantarum but higher in low- vs. high-DM silage. • L. buchneri dominated ensiling, regardless of DM level. • 10 metabolites with bio-functional activity were identified.


Asunto(s)
Microbiota , Sorghum , Ensilaje , Lactobacillus/metabolismo , Zea mays/metabolismo , Metaboloma , Fermentación
6.
Psychol Res Behav Manag ; 17: 567-576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379635

RESUMEN

Objective: Secondary traumatic stress (STS) is stress caused by helping or wanting to help someone who has suffered a traumatic event. STS has adverse effects on nurses and their work, such as reduced career achievement, an increased staff turnover rate, inability to complete work, avoidance of contact with patients, mental exhaustion, negative emotions which seriously affect the quality of their work and life. The study to investigate secondary traumatic stress in emergency and intensive care nurses and analyze factors that influence it. Material and Methods: The study was a cross-sectional survey. Convenience sampling was used to select hospital emergency and intensive care department nurses (n=434) who met the inclusion and exclusion criteria from August to October 2021 to participate in this study. They provided demographic data and completed measures of secondary traumatic stress, emotional intelligence, anxiety and depression. Data analysis included independent samples t-tests, one-way analysis of variance, Pearson correlation analysis and multiple linear regression analysis. Results: Almost one-third (30.7%) of participants were at moderate risk for Secondary Traumatic Stress Scale or above, with high average scores on measures of anxiety (GAD-7 average = 6.05 ± 4.13), and depression (PHQ-9 average = 6.35 ± 4.85). The results of multiple linear regression analysis showed that the average daily amount of sleep in the past week, the number of night shifts in the past month, emotional intelligence, anxiety, and depression influenced secondary traumatic stress, explaining 70.8% of the variance. Conclusion: The STS of emergency and intensive care nurses in Changzhou is at a high level. Sleep time, number of night shifts and emotional intelligence are related to secondary traumatic stress and anxiety and depression significantly predicted the degree of secondary traumatic stress. Nurses need to master effective treatment methods for secondary traumatic stress, to improve their work efficiency and nursing quality and ensure nursing safety.

7.
BMC Genomics ; 25(1): 149, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321384

RESUMEN

BACKGROUND: The mediator complex subunits (MED) constitutes a multiprotein complex, with each subunit intricately involved in crucial aspects of plant growth, development, and responses to stress. Nevertheless, scant reports pertain to the VunMED gene within the context of asparagus bean (Vigna unguiculata ssp. sesquipedialis). Establishing the identification and exploring the responsiveness of VunMED to cold stress forms a robust foundation for the cultivation of cold-tolerant asparagus bean cultivars. RESULTS: Within this study, a comprehensive genome-wide identification of VunMED genes was executed in the asparagus bean cultivar 'Ningjiang3', resulting in the discovery of 36 distinct VunMED genes. A phylogenetic analysis encompassing 232 MED genes from diverse species, including Arabidopsis, tomatoes, soybeans, mung beans, cowpeas, and asparagus beans, underscored the highly conserved nature of MED gene sequences. Throughout evolutionary processes, each VunMED gene underwent purification and neutral selection, with the exception of VunMED19a. Notably, VunMED9/10b/12/13/17/23 exhibited structural variations discernible across four cowpea species. Divergent patterns of temporal and spatial expression were evident among VunMED genes, with a prominent role attributed to most genes during early fruit development. Additionally, an analysis of promoter cis-acting elements was performed, followed by qRT-PCR assessments on roots, stems, and leaves to gauge relative expression after exposure to cold stress and subsequent recovery. Both treatments induced transcriptional alterations in VunMED genes, with particularly pronounced effects observed in root-based genes following cold stress. Elucidating the interrelationships between subunits involved a preliminary understanding facilitated by correlation and principal component analyses. CONCLUSIONS: This study elucidates the pivotal contribution of VunMED genes to the growth, development, and response to cold stress in asparagus beans. Furthermore, it offers a valuable point of reference regarding the individual roles of MED subunits.


Asunto(s)
Fabaceae , Vigna , Vigna/genética , Filogenia , Respuesta al Choque por Frío , Complejo Mediador/genética , Fabaceae/genética
8.
BMC Cardiovasc Disord ; 24(1): 93, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326774

RESUMEN

BACKGROUND: Cognitive frailty (CF) is currently a significant issue, and most of the associated factors discovered in current studies are not modifiable. Therefore, it is crucial to identify modifiable risk factors that can be targeted for interventions in patients with chronic heart failure (CHF). This study aimed to investigate the prevalence and modifiable risk factors of CF in CHF patients in China. METHODS: In this cross-sectional study, we sequentially enrolled patients diagnosed with CHF. CF served as the dependent variable, assessed through the Montreal Cognitive Assessment (MoCA) Scale and the FRAIL Scale. The independent variable questionnaire encompassed various components, including general demographic information, the Social Support Rating Scale (SSRS), the Simplified Nutrition Appetite Questionnaire (SNAQ), the Hamilton Depression Scale (HAMD), the Hamilton Anxiety Scale (HAMA), and the Minnesota Living with Heart Failure Questionnaire (MLHFQ). Logistic regression analysis was employed to identify independent factors contributing to CF. RESULTS: A total of 271 patients with CHF were included in the study. The overall prevalence of CF was found to be 49.4%, with 28.8% of patients exhibiting potentially reversible cognitive frailty and 20.7% showing reversible cognitive frailty. Among middle-young CHF patients, 10.7% had reversible cognitive frailty and 6.4% had potentially reversible cognitive frailty, with a prevalence of CF at 17.1%. Logistic regression analysis revealed that body mass index (OR = 0.826, 95%CI = 0.726-0.938), blood pressure level (OR = 2.323, 95%CI = 1.105-4.882), nutrition status (OR = 0.820, 95%CI = 0.671-0.979), and social support (OR = 0.745, 95%CI = 0.659-0.842) were independent factors associated with CF (p < 0.05). CONCLUSIONS: We observed a relatively high prevalence of CF among Chinese patients diagnosed with CHF. Many factors including BMI, blood pressure level, nutrition status, and social support emerging as modifiable risk factors associated with CF. We propose conducting clinical trials to assess the impact of modifying these risk factors. The outcomes of this study offer valuable insights for healthcare professionals, guiding them in implementing effective measures to improve the CF status in CHF patients during clinical practice.


Asunto(s)
Disfunción Cognitiva , Fragilidad , Insuficiencia Cardíaca , Humanos , Anciano , Fragilidad/diagnóstico , Fragilidad/epidemiología , Estudios Transversales , Prevalencia , Factores de Riesgo , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/complicaciones , China/epidemiología , Cognición , Anciano Frágil , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/complicaciones
9.
J Agric Food Chem ; 72(7): 3445-3455, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38325393

RESUMEN

As representatives of allelopathy, weeds consistently coexist with crops, exhibiting mutual growth inhibition. At the same time, herbicides are usually employed to control weeds. However, few studies have investigated how herbicides will affect allelopathy between crops and their neighboring weeds. Our findings suggested that allelopathic-induced phenotypic variations in ryegrass were reduced in the presence of the herbicide imazethapyr (IM), consistent with the antioxidant system analysis results. Additionally, IM affected the levels of allelochemical hydroxamic acid (Hx) in both plants. Hydroponic experiments revealed that this impact was due to the accelerated transportation of Hx from wheat to ryegrass, driven by ryegrass-secreted jasmonic acid. This study holds paramount significance for comprehending the effects of herbicides on the allelopathic interactions between nontargeted crops and neighboring weeds, contributing to an enhanced understanding of herbicides on plant species interactions.


Asunto(s)
Herbicidas , Lolium , Ácidos Nicotínicos , Triticum , Herbicidas/farmacología , Alelopatía , Malezas , Productos Agrícolas
10.
J Infect Dis ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38234283

RESUMEN

BACKGROUND: Soluble inflammatory factors have been investigated in the cerebrospinal fluid (CSF) of neurosyphilis patients with low-throughput technology. This study aimed to illustrate the characteristics of soluble factors profiles in CSF of neurosyphilis patients. METHODS: We measured the concentrations of 45 cytokines/chemokines/growth factors in CSF from 112 untreated syphilis cases, including latent syphilis (LS), asymptomatic neurosyphilis (ANS), meningeal neurosyphilis (MNS), meningovascular neurosyphilis (MVNS), paralytic dementia (PD) and ocular syphilis (OS). RESULTS: Thirty-three differentially expressed soluble factors (DeSFs) were categorized into three clusters. DeSFs scores of cluster 1 and 2 (DeSFS1 and DeSFS2) were positively correlated with elevated neopterin and neurofilament light subunit (NF-L) concentration, respectively. DeSFs scores of cluster 3 were positively correlated with WBC, protein, NF-L and neopterin. Patients with LS, ANS, and OS exhibited an overall lower abundance of DeSFs. PD patients exhibited significantly increased levels of cluster 1 and 3, and the highest total DeSFs score, while patients with MNS and MVNS showed enhanced levels of cluster 2. ROC analysis revealed that DeSFS1 effectively discriminated PD, and DeSFS2 discriminated MNS/MVNS with high accuracy. CONCLUSIONS: Patients with neurosyphilis at different stages have distinctive patterns of soluble factors in CSF, which are correlated with immune status and neuronal damage.

11.
J Fluoresc ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252215

RESUMEN

Three rhodamine 6G derivatives (REHA, RETA and REDA) were designed and synthesized by connecting rhodamine 6G and 3-methyl-2-thiophenal with hydrazine hydrate, ethylenediamine and diethylenetriamine, respectively. In CH3CN/H2O (50/50, v/v), the absorbance of REHA, RETA and REDA at 528 nm was suddenly enhanced by 3.2, 3.8 and 7.2 times within the pH range of 3.03-2.31, 3.05-2.32 and 3.06-2.34, respectively, and the solution changed from colorless to pink. Meanwhile, the maximal fluorescence intensity sharply increased by 53.9, 26.6 and 24.9 times in the pH range of 3.86-3.46, 3.88-3.47 and 3.89-3.48, respectively, and the solution changed from dark to bright yellow-green fluorescence. REHA, RETA and REDA can act as highly selective and sensitive colorimetric and fluorescent pH switches with good recyclability and anti-interference ability. The response mechanism of REHA, RETA and REDA to pH was studied by 1H NMR spectroscopy, and their application in indicating small pH changes in dyeing wastewater was investigated.

12.
Sci Total Environ ; 916: 170272, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266735

RESUMEN

Membrane fouling, critically determined by the interplay of interfacial interaction between foulant and membrane, is a critical impediment that limits application extension of electrodialysis (ED) process. In this study, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model and molecular simulation were performed to quantify the interaction energy barrier for revealing anion exchange membranes (AEMs) fouling mechanisms of calcium ions coexisted with natural organic matter (NOM) (sodium alginate, humic acid, and bovine serum albumin). The insight gained from DMol3 module was also utilized to interpret the adhesion process of NOM at the molecular level. The interaction energy suggested that the presence of Ca-NOM complex magnify the adhesion on the surface cavities of AEMs structures. The molecular simulation and XDLVO presented a good agreement in predicting the fouling trajectory based on the experimental findings. The short-path acid-base interaction exerted a predominant influence on exploring the fouling formation process. In addition, the sodium alginate displayed more stable adhesion behavior through calcium ions bridges stimuli than humic acid and bovine serum albumin. In particular, the molecular simulation calculations exhibited a superior level of concurrence with colloid growth of membrane fouling. Combined XDLVO theory with DMol3 model proposed a new approach to understand membrane fouling mechanisms in ED process.

13.
J Fluoresc ; 34(1): 169-178, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37166613

RESUMEN

A novel 1,8-naphthalimide fluorescent probe (BNAS) containing 2-thiopheneethylamine moiety was designed and synthesized for analyzing the composition of N,N-dimethylformamide (DMF)/deionized water (H2O) mixtures. With the increase of DMF content, the fluorescence of the system was enhanced from dark to bright yellow-green. Taking 15% (volume) DMF content as the dividing point, the fluorescence intensity of the system at 535 nm showed two good linear relationships with the DMF content 1-15% and 15-99%, based on which the composition of the DMF/H2O mixtures with a volume ratio of 1/99-99/1 could be quickly and efficiently analyzed with high selectivity and sensitivity. BNAS can be applied in real sample assay and further be loaded onto filter paper to make a portable sensor. The mechanism of BNAS response to DMF/H2O composition was also explored.

14.
Ecotoxicol Environ Saf ; 269: 115784, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061079

RESUMEN

Patulin (PAT) is one of the mycotoxins commonly found in agricultural products and fruits, and has obvious toxic effects on animals and humans. PAT has been found to cause myocardial toxicity and oxidative damage, but the mechanism of myocardial toxicity remained to be elucidated. We investigated the toxic effects and potential mechanisms of PAT on human cardiomyocytes and explored the effects of reactive oxygen species (ROS) on them. The study showed that treatment with PAT for 24 h decreased cell viability and superoxide dismutase (SOD) activity, and increased ROS and lactate dehydrogenase (LDH) levels. Moreover, in addition to detecting increased γ-H2AX expression and observing nuclear damage, the comet assay also showed increased DNA tail distance in the PAT-treated group, followed by an increase in phosphorylation of the p53 protein and p21 protein expression, and a decrease in CDK1 and Cyclin B1 protein expression, and G2/M phase arrest. In addition, PAT induced endoplasmic reticulum stress (ERS) and induced apoptosis, as evidenced by Ca2+ increase, ER enlargement and swelling, and upregulation of ERS-related genes and proteins expression, and increased expression of three apoptotic pathway proteins under ERS, including CHOP, JNK, and caspase-12. Meanwhile, N-acetylcysteine (NAC, a ROS scavenger) reversed the negative effects of PAT treatment on cells. These results clarify that excessive ROS production by PAT-treated AC16 cells not only causes DNA damage, leading to cell cycle arrest, but also causes ERS, which triggers apoptotic pathways to cause apoptosis.


Asunto(s)
Patulina , Animales , Humanos , Patulina/toxicidad , Patulina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Daño del ADN , Apoptosis , Estrés del Retículo Endoplásmico
15.
Eur J Pharmacol ; 964: 176261, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141938

RESUMEN

Endometriosis is a frequent, chronic, estrogen-dependent and inflammatory gynecological disease leading to pain and infertility. Clinical and metabolic studies reveal that patients with endometriosis are susceptible to hyperlipemia and lipid dysfunction, putting them at ascending risk of cardiovascular diseases. Statins constitute a group of cholesterol-lowering drugs with pleiotropic effects. A plethora of researches have proved their ability to inhibit the growth of ectopic lesions in endometriosis. However, concerns exist about their possible adverse effects on ovarian function. This study aimed to investigate the possible effect of atorvastatin on the ovarian endocrine function and fertility capacity in the prevention and treatment of endometriosis. Here, 5 mg/kg atorvastatin was intraperitoneally injected to the endometriosis mice once a day for consecutive fourteen days during and after the development of endometriotic implants. The results indicated that atorvastatin not only led to regression of the ectopic lesions, but also caused no discernible harm to the ovary for both the preventive and the therapeutic models. In addition, it elicited a protective effect on the ovarian reserve and fertility possibly by reducing inflammation in the ovary. Hence, atorvastatin could be a promising drug for endometriosis prevention and treatment.


Asunto(s)
Endometriosis , Humanos , Femenino , Ratones , Animales , Endometriosis/tratamiento farmacológico , Endometriosis/prevención & control , Endometriosis/metabolismo , Ovario , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Fertilidad , Estrógenos/farmacología
16.
Dalton Trans ; 53(1): 354-363, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38050870

RESUMEN

The in situ monitoring of toxic volatile organic compound gases using metal oxide-based gas sensors is still challenging. Herein, mesoporous In2O3 nanoparticles, assembled using smaller nanoparticles, were synthesized via a facile solvothermal method and used to load Au nanoparticles to prepare mesoporous Au/In2O3 for ethanol detection. The obtained In2O3 and Au/In2O3 were meticulously analysed by XRD, SEM, BET, TEM and XPS techniques. It was revealed that Au nanoparticles were uniformly distributed on mesoporous In2O3 nanoparticles. Notably, the obtained mesoporous 1% Au/In2O3 is highly sensitive to ethanol gas at an optimal working temperature of 180 °C, showing a response of 55 to 50 ppm of ethanol, which is considerably higher compared to that of In2O3 nanoparticles. The significantly enhanced sensitivity results from the electronic and chemical sensitization effects of Au nanoparticles. Moreover, the mesoporous Au/In2O3 nanoparticles also showed eminent selectivity, short response/recovery time, low detection limit, good linear relationship, superb repeatability, and wonderful long-term stability, suggesting that Au/In2O3 nanoparticles have great potential application for in situ monitoring of ethanol gas.

17.
J Environ Manage ; 348: 119214, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37852077

RESUMEN

Widespread degradation of natural ecosystems around the globe has resulted in several ecological problems. Ecological restoration is considered a global priority as an important means of mitigating ecosystem degradation and enhancing ecosystem services provision. Regarding ecosystem reference state is a prerequisite for ecological restoration. However, there were few studies focusing on how to regard reference state for ecological restoration, especially under a changing climate. Taking Guizhou Province, a typical karst region in China, as a case study area, in this study we firstly assessed ecosystem services under homogeneous climate conditions. Secondly, we defined the optimal ecosystem services as ecosystem reference state, and then evaluated restoration suitability under a comprehensive framework. Finally, ecological restoration priority areas (EPRAs), which included ecological reconstruction areas, assisted regeneration areas and conservation priority areas needing restoration, were identified by integrating restoration suitability and conservation priority areas. The results showed that the services of water conservation and habitat maintenance only increased less than 10% from 2001 to 2018. Identified ecological reconstruction areas and assisted regeneration areas covered 1078 km2 and 1159 km2 respectively. Additionally, 15 conservation priority areas with the total area of 18,507 km2 were identified as conservation priority areas needing restoration. Accounting for 11.78% of the total area, ERPAs were mostly located in the eastern part of Guizhou, including Qiandongnan, Tongren, and Zunyi. The approach proposed here for regarding ecosystem reference state after controlling climate variables and the framework for identifying ERPAs can provide a scientific reference for large-scale ecological restoration planning.


Asunto(s)
Conservación de los Recursos Hídricos , Ecosistema , Conservación de los Recursos Naturales , China , Clima
18.
Environ Pollut ; 338: 122671, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788797

RESUMEN

Antibiotic resistance genes (ARGs) are one of the emerging contaminants posing a great deal of hazardous risk to public health. This study employed metagenomics and deciphered the potential risk of the antibiotic resistome and their vertical transfer to ensiled whole-crop corn silage harvested from six climate zones: 1. Warm temperate-fully humid-hot summer (Cfa), 2. Arid-desert-cold arid (BWk), 3. Snow-desert-cold summer (Dwc), 4. Snow-desert-hot summer (Dwa), 5. Arid-steppe-cold arid (BSk), and 6. Equatorial-desert (Aw) based on the Köppen-Geiger climate classification in China. The findings demonstrate a high diversity of ARGs, which is related to the drug classes of tetracycline, ciprofloxacin, lincosamide, fosfomycin, and beta lactam. Resistome variations are mostly related to variations in microbial composition and fermentation characteristics of the silages from different climate zones, which are indirectly influenced by environmental conditions. The most dominating ARGs in corn silage were tetM, acrA, H-NS, lnuA, emrR, and KpnG, which is primarily hosted by Klebsiella and Lactobacilli. There were 5 high-risk ARGs (tetM, bacA, SHV-1, dfrA17, and QnrS1) in silage from different climate zones, and the tetM was the most prevalent high-risk ARG. However, throughout the ensiling process, the abundance of ARGs, and mobile ARGs were reduced. The resistome contamination in silage from Tibet (Dwc) with high altitude and harsh environment was relatively low due to the low variety and abundance of ARGs, the low abundance of mobile ARGs and high-risk ARGs. In addition, most of the bacteria responsible for the silage fermentation were also found to be the hosts to the ARGs, although their abundance decreased after 90 d of silage fermentation. Hence, we alert the existence of ARGs-related biosafety risk in silages and call for more attention to the silage ARGs, their hosts, and mobile genetic elements in order to curtail their possible risk to public health.


Asunto(s)
Antibacterianos , Zea mays , Antibacterianos/farmacología , Ensilaje/análisis , Bacterias/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos
19.
J Environ Manage ; 347: 119235, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806267

RESUMEN

Silage as the main forage for ruminants could be a reservoir for antibiotic resistance genes (ARGs) through which these genes got access into the animals' system causing a latent health risk. This study employed metagenomics and investigated the ARGs' fate and transmission mechanism in high-moisture alfalfa silage treated with formic acid bactericide. The results showed that there were 22 ARGs types, in which multidrug, macrolide-lincosamide-streptogramine, bacitracin, beta-lactam, fosmidomycin, kasugamycin, and polymycin resistance genes were the most prevalent ARGs types in the ensiled alfalfa. The natural ensiling process increased ARGs enrichment. Intriguingly, after 5 days of ensiling, formic acid-treated silage reduced ARGs abundances by inhibiting host bacterial and plasmids. Although formic acid bactericide enhanced the fermentation characteristics of the high-moisture alfalfa by lowering silage pH, butyric acid concentration, dry matter losses and proteolysis, it increased ARGs abundances in alfalfa silage owing to increases in abundances of ARGs carriers and transposase after 90 days of ensiling. Notably, several pathogens like Staphylococcus, Clostridium, and Pseudomonas were inferred as potential ARGs hosts in high-moisture alfalfa silage, and high-moisture alfalfa silage may harbor a portion of the clinical ARGs. Fundamentally, microbes were distinguished as the foremost driving factor of ARGs propagation in ensiling microecosystem. In conclusion, although formic acid bactericide improved the fermentation characteristics of high-moisture alfalfa during ensiling and reduced ARGs enrichment at the initial ensiling stage, it increased ARGs enrichment at the end of ensiling.


Asunto(s)
Antibacterianos , Ensilaje , Animales , Ensilaje/análisis , Ensilaje/microbiología , Antibacterianos/farmacología , Medicago sativa , Formiatos/farmacología , Fermentación
20.
Arch Anim Nutr ; 77(5): 323-341, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37726873

RESUMEN

Silage fermentation is a complicated biochemical process involving interactions between microbes and metabolites. However, the overall metabolome feature of ensiled forage and its response to lactic acid bacteria inoculation is poorly understood. Hence, in this study metabolome profiles of whole-plant corn silage inoculated with or without Lactiplantibacillus plantarum were characterised via solid-phase microextraction/gas chromatography/mass spectrometry (SPME-GC-MS), gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS), and Liquid chromatography/Q Exactive HFX mass spectrometry (LC-QE-MS/MS) analysis. There were 2087 identified metabolites including 1143 reliably identified metabolites in fresh and ensiled whole-plant corn. After ensiling, the increased metabolites in whole-plant corn were mainly composed of organic acids, volatile organic compounds (VOC), benzene and substituted derivatives, carboxylic acids and derivatives, fatty acyls, flavonoids, indoles and derivatives, organooxygen compounds (including amines and amides), phenols, pyridines and derivatives, and steroids and steroid derivatives, which includes neurotransmitters and metabolites with aromatic, antioxidant, anti-inflammatory, and antimicrobial activities. Phenylacetaldehyde was the most abundant aromatic metabolite after ensiling. L-isoleucine and oxoproline were the major free amino acids in silage. Ensiling markedly increased the relative abundances of 3-phenyllactic acid, chrysoeriol, 6-O-acetylaustroinulin, acetylcholine, γ-aminobutyric acid, pyridoxine, and alpha-linoleic acid. Inoculation with L. plantarum remarkably changed silage VOC composition, and essential amino acids, 3-phenyllactic acid, and cinnamaldehyde compared with untreated silage. The present study does not only provide a deeper insight into metabolites of the ensiled whole-plant corn but also reveals metabolites with specific biological functions that could be much helpful in screening novel lactic acid bacteria to well ensile forages. Inoculation with L. plantarum significantly affects the metabolome in ensiled whole-plant corn.


Asunto(s)
Ensilaje , Compuestos Orgánicos Volátiles , Animales , Ensilaje/análisis , Zea mays/química , Alimentación Animal/análisis , Espectrometría de Masas en Tándem/veterinaria , Dieta/veterinaria , Metaboloma , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...